Preparing a “Web-Savvy” Future Workforce

WWW 2006
Edinburgh Scotland
May 25, 2006

J.S. Hurley, PhD
Senior Manager
Distributed Software and Systems Integration
The Boeing Company
john.s.hurley@boeing.com
Outline

- Premise
- Evolving Society
- Major Technological Advancements
- Preparing a “Web-Savvy” Future Workforce
- Issues
- Applications
- Summary
- Acknowledgements
Ongoing advances in the Web, hardware, middleware and networking continue to drive new demands and expectations for solutions to complex applications by a variety of user communities. Computing no longer remains the sole domain of the applied sciences and engineering communities. It has now become critical in non-traditional applied fields such as journalism, humanities and in resources as cool as Xbox and PlayStation, and by movie studios as diverse as Dreamworks SKG, MGM, WB and Disney. As a result, the caretakers of the necessary technologies will also require a broad range of advanced skills (e.g., security, systems integration, middleware, communication and networking) on the new Global stage. Resource management is critical to achieving a number of necessary goals, but also brings some unique and complex challenges in this new era of globalization.

In this presentation, we look at some of the qualifications, expectations, obstacles and opportunities facing the Next Generation Workforce in solving global problems with global resources.
To benefit from globalization...there are two things that you must do:

– First, you have to accept and embrace change (easy to say, hard to do)...

– Second, you have to innovate. To innovate means literally to renew...or make new again.

Excerpt from Distinguished Lecture Series in International Business at St. Louis University, Presentation entitled “Innovation and the Global Economy”, May 16, 2006

— Boeing CEO, President, Chairman
Evolving Society

Boeing Technology | Phantom Works

E&IT | Mathematics and Computing Technology

Quality of Life
Major Technological Advancements

Energy

Copyright © 2006 Boeing. All rights reserved.
Major Technological Advancements

Energy

Health & Medicine

- Genomics and Proteomics
- Pharmaceuticals
Major Technological Advancements

- Energy
- Health & Medicine
- Manufacturing
  - Materials
  - Processes
Major Technological Advancements

- Energy
- Health & Medicine
- Manufacturing
- Security
  - Sensors
Major Technological Advancements

Energy

Health & Medicine

Manufacturing

Security

Transportation

• Hybrids
Major Technological Advancements

Boeing Technology | Phantom Works

E&IT | Mathematics and Computing Technology

Energy

Health & Medicine

Manufacturing

Security

Transportation

Web
Preparing a “Web-Savvy” Future Workforce

- Qualifications
  - Multi-disciplined
  - Broad tech base
  - Multi-cultured

- Obstacles
  - Qualifications
  - Expectations
  - Cultural

- Expectations
  - Problem solvers
  - Adaptive
  - Expedient

- Opportunities
  - Global
  - Impact
  - Adventurous
Industry Perspective

• Improve performance and Cut costs
  • Sharing and Managing Resources
    – Resources
      ▪ Middleware
      ▪ Systems
      ▪ Networking
      ▪ Data, Information and Knowledge
      ▪ People

• Enterprise
  • No longer a local entity — “Global” environment
    – Other sites, collaborators, geographies and cultures
  • Solutions must now be:
    – Policy and Role-based
    – Service-oriented
    – Evolvable/Adaptive
    – Secure
    “Real- or Near Real-Time (RT)”
Issues

Boeing Technology | Phantom Works

E&IT | Mathematics and Computing Technology

- Technical
- Business
• Competition
• Efficiency
• Customer-centric
• Value
• Markets
Customer-Centric

• Focus on customer’s needs and comforts
• Look beyond customer’s expectations
• Competition aware
  ▪ “If they won’t, we will!”
• Total experience
  ▪ Memorable  
    (in a positive sense)
Organizations A, B, and C are collaborating to build a product (say, an airplane) where there is a business contract between A and B for landing gear.

Another separate contract exists between A and C for electrical wiring.

A is the lead contractor.

There is some data that is open to A and B, but not C.

Similarly, there is also some data that is open to A and C, but not B.
International and Emerging Markets

• Sharing
  • Content
  • Data
  • Information
  • Knowledge
  • People

• Connecting
  • People-to-Content
  • People-to-People
  • Through flexible and adaptive environments
  • Shared Matter Experts

• Need
  • People with specific skills (technical, social, business)
  • Knowledge of the emerging markets and opportunities
  • Understanding of the Risk
• Scalable
• Stable
• Verifiable
• Highly Available (HA) and Highly Reliable (HR)
• Risk Management
• Heterogeneous Enterprises
• Service-oriented
• Adaptive/Evolvable
• Timely
• COTS-based
• Monitoring and Maintenance
• Modular
• Integrable
• Secure
• Standards-based
• User-friendly
Applications

Boeing Technology | Phantom Works

Mathematics and Computing Technology

- Complex Systems
- Structures and Processes
- Collaborative Engineering
- Virtualization
- Data and Text Mining
- Enterprise Security
- Information and Data Management
- “Smart” Environments
- Optimization
- Protocol and Event Processing
- Signal and Image Processing
Most computing environments require multi-level security engagement.

Present Data Encryption technologies can provide unwanted entry into systems.

The “global” enterprise significantly complicates security concerns and access.

- IT vs. Technology growth is a no-win situation.
R&D to Production

• Research and Development ⇒ Production
Summary

- Tremendous opportunities and incredible time to engage

- With advancements and progress come higher expectations and demands—never only about the technology

- Must embrace but not be limited by cultural perceptions
Acknowledgements

• W3C conference organizers, staff and sponsors
• University of Southampton/IT Innovation Centre
• Boeing Technology/Phantom Works/M&CT
• Ray Benson, The Boeing Company